
ALM Documentation
Release 2.0.0 beta

Terumasa Tadano

Jun 13, 2023

Contents:

1 About 1
1.1 What is ALM? . 1
1.2 Features . 1
1.3 Links . 1
1.4 License . 1
1.5 How to Cite ALM . 2
1.6 Acknowledgement . 2
1.7 Author & Contact . 2

2 Building ALM using conda 3
2.1 Preparing build tools by conda . 3
2.2 Building ALM . 3

3 Building ALM using Makefile 7
3.1 Requirement . 7
3.2 How to install . 7

4 Making input file for command line 9
4.1 Format of input file . 9
4.2 List of input variables . 9

5 Using ALM from python 21
5.1 Initialization . 21
5.2 Dataset: displacements and forces . 22
5.3 Selection of force constants elements . 22
5.4 Force constants calculation . 22
5.5 Extraction of force constants values . 23
5.6 LASSO and elastic net regression . 23
5.7 Wrap-up and example . 23

6 How to make a DFSET file 25
6.1 Format of DFSET . 25
6.2 Generation of DFSET by extract.py . 26

7 Mathematical background 27
7.1 Interatomic force constants (IFCs) . 27
7.2 Symmetry relationship between IFCs . 27

i

7.3 Constraints between IFCs . 28
7.4 Estimate IFCs by linear regression . 29

8 API 31
8.1 ALM python modules . 31

9 Indices and tables 33

ii

CHAPTER 1

About

1.1 What is ALM?

ALM is an open source software designed for estimating harmonic and anharmonic force constants based on the
supercell method.

1.2 Features

• Extraction of harmonic and anharmonic force constants based on the supercell approach

• Applicable to any crystal structures and low-dimensional systems

• Accurate treatment of translational and rotational invariance

• Interface to VASP, Quantum-ESPRESSO, xTAPP, and LAMMPS codes

• API for python and C++

1.3 Links

• Documentation : http://alm.readthedocs.io (this page)

• Git repository : http://github.com/ttadano/ALM

1.4 License

Copyright © 2014–2018 Terumasa Tadano

This software is distributed under the MIT license. See the LICENSE.txt file for license rights and limitations.

1

http://alm.readthedocs.io
http://github.com/ttadano/ALM

ALM Documentation, Release 2.0.0 beta

1.5 How to Cite ALM

Please cite the following article when you use ALM in :

T. Tadano, XXX, XXX XX, XXXX (XXXX)

1.6 Acknowledgement

This project is/was partially supported by the following projects:

• Grant-in-Aid for Young Scientists (B) (16K17724)

• Grant-in-Aid for Scientific Research on Innovative Areas ‘Materials Design through Computics: Complex Cor-
relation and Non-Equilibrium Dynamics’. (http://computics-material.jp)

1.7 Author & Contact

International Center for Young Scientists (ICYS),
National Institute for Material Science (NIMS),
Japan

2 Chapter 1. About

http://computics-material.jp

CHAPTER 2

Building ALM using conda

ALM is written in C++. To build it, a set of build tools is needed. Currently using conda gives a relatively simple and
uniform way to perform building the ALM python module, ALM library for C++, and ALMM command executable.
In this documentation, it is presented a step-by-step procedure to build them using conda.

• Preparing build tools by conda

• Building ALM

– Building ALM python module

– Building ALM executable and C++ library

2.1 Preparing build tools by conda

At first, it is recommended to prepare a conda environment by:

% conda create --name alm -c conda-forge python=3.8

Here the name of the conda environment is chosen alm. The detailed instruction about the conda environment is
found here. To build ALM on linux or macOS, the following conda packages are installed by

% conda install -c conda-forge numpy scipy h5py compilers "libblas=*=*mkl" spglib
→˓boost eigen cmake ipython mkl-include

2.2 Building ALM

Now the directory structure supposed in this document is shown as below:

3

https://conda.io/docs/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands
https://conda.io/docs/user-guide/tasks/manage-environments.html

ALM Documentation, Release 2.0.0 beta

$HOME
|-- alm
| `-- ALM
| |-- bin/
| |-- include/
| |-- lib/
| |-- python/setup.py
| |-- src/
| |-- _build/
| |-- CMakeLists.txt
| |-- CMakeLists.txt.conda
| `-- ...
|
|-- $CONDA_PREFIX/include
|-- $CONDA_PREFIX/include/eigen3
|-- $CONDA_PREFIX/lib
`-- ...

alm directory is created by us and we move to this directory. Now we are in $HOME/alm. In this direcotry, ALM is
downloaded from github. ALM directorie is created running the following commands:

% git clone https://github.com/ttadano/ALM.git

Make sure that you are using develop branch by

% cd ALM
% git branch

* develop

When this is done on $HOME/ALM, the above directory structure is made. If git command doesn’t exist in your system,
it is also obtained from conda by conda install git.

2.2.1 Building ALM python module

The ALM python module is built on the directory $HOME/alm/ALM/python. So first you have to move to this
directory. The build and installation in the user directory is done by

% python setup.py build
% pip install -e .

2.2.2 Building ALM executable and C++ library

If you need only ALM python module, this section can be skipped.

Let’s assume we are in the directory $HOME/alm/ALM (see above directory structure). The ALM library for C++ is
built using cmake. The cmake’s configuration file has to have the filename CMakeLists.txt. So its example of
CMakeLists.txt.conda is renamed to CMakeLists.txt, i.e.,

% cp CMakeLists.txt.conda CMakeLists.txt

Then this CMakeLists.txt may be modified appropriately when the following compilation fails. Using this
CMakeLists.txt, the ALM library for c++ is built for Linux by

4 Chapter 2. Building ALM using conda

ALM Documentation, Release 2.0.0 beta

% mkdir _build && cd _build
% cmake ..
% make -j4
% make install

and for macOS

% mkdir _build && cd _build
% cmake -DCMAKE_C_COMPILER='clang' -DCMAKE_CXX_COMPILER='clang++' ..
% make -j4
% make install

To see detailed make log, -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON option for cmake should be added.

The dynamic and static link libraries and the head file are installed at

• $HOME/alm/ALM/lib/libalmcxx.dylib or $HOME/alm/ALM/lib/libalmcxx.so

• $HOME/alm/ALM/lib/libalmcxx.a

• $HOME/alm/ALM/include/alm.h

The executable is found at

• $HOME/alm/ALM/bin/alm

To use the dynamic link library, it may be necessary to set $LD_LIBRARY_PATH to

% export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$HOME/alm/ALM/lib:$LD_LIBRARY_PATH

and to use the executable

% export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH

2.2. Building ALM 5

ALM Documentation, Release 2.0.0 beta

6 Chapter 2. Building ALM using conda

CHAPTER 3

Building ALM using Makefile

ALM can also be built with the Makefile in the src subdirectory. This approach only generates the command line
version of ALM (binary alm). Therefore, if you want to use ALM from python as well, please build ALM using
conda.

3.1 Requirement

• C++ compiler (C++11 standard or newer)

• LAPACK

• Boost C++ library

• Eigen3 library

• spglib

3.2 How to install

1. Install the LAPACK, Boost C++, and Eigen3, and spglib.

To install the Boost C++ library, please download a source file from the website and unpack the file. Then, copy
the ‘boost’ subdirectory to the include folder in the home directory (or anywhere you like). This can be done as
follows:

$ cd
$ mkdir etc; cd etc
(Download a source file and mv it to ~/etc)
$ tar xvf boost_x_yy_z.tar.bz2
$ cd ../
$ mkdir include; cd include
$ ln -s ../etc/boost_x_yy_z/boost .

7

http://www.boost.org
http://eigen.tuxfamily.org/
https://atztogo.github.io/spglib/
http://www.boost.org

ALM Documentation, Release 2.0.0 beta

In this example, we made a symbolic link to the ‘boost’ subdirectory in $HOME/include. Instead of
installing from source, you can install the Boost library with Homebrew on Mac.

In the same way, please install the Eigen3 include files as follows:

$ cd
$ mkdir etc; cd etc
(Download a source file and mv it to ~/etc)
$ tar xvf eigen-eigen-*.tar.bz2 (* is an array of letters and digits)
$ cd ../
$ cd include
$ ln -s ../etc/eigen-eigen-*/Eigen .

2. Clone ALM from the git repository and edit Makefile:

$ git clone https://github.com/ttadano/ALM
$ cd ALM/src/
(Edit Makefile.linux or Makefile.osx)
$ make -f Makefile.linux -j (or make -j Makefile.osx -j)

In the src directory, we provide sample Makefiles for linux (Intel compiler) and MacOS (GCC installed via
homebrew) as shown below.

Listing 1: Makefile.linux

1 CXX = icpc
2 CXXFLAGS = -O2 -xHOST -qopenmp -std=c++11
3 INCLUDE = -I../include -I$(HOME)/include -I$(SPGLIB_ROOT)/include
4

5 CXXL = ${CXX}
6 LDFLAGS = -mkl -L$(SPGLIB_ROOT)/lib -lsymspg
7

8 LAPACK =
9 LIBS = ${LAPACK}

Listing 2: Makefile.osx

1 # Use gcc >= 4.8 to use OpenMP
2 # OpenMP-enabled gcc can be installed via homebrew
3 CXX = g++-9
4 CXXFLAGS = -O2 -fopenmp -std=c++11
5 INCLUDE = -I../include -I$(HOME)/include -I$(SPGLIB_ROOT)/include -I/usr/local/

→˓include/eigen3/ -I/usr/local/include/
6

7 CXXL = ${CXX}
8 LDFLAGS = -lgomp -L$(SPGLIB_ROOT)/lib -lsymspg
9

10 LAPACK = -llapack -lblas
11 LIBS = ${LAPACK}

3. Modify LD_LIBRARY_PATH as follows:

bash, zsh
$ export LD_LIBRARY_PATH=$(HOME)/src/spglib/lib:$LD_LIBRARY_PATH

csh, tcsh
$ setenv LD_LIBRARY_PATH $(HOME)/src/spglib/lib:$LD_LIBRARY_PATH

8 Chapter 3. Building ALM using Makefile

http://brew.sh

CHAPTER 4

Making input file for command line

4.1 Format of input file

Each input file should consist of entry fields. Available entry fields are

&general, &interaction, &cutoff, &cell, &position, and &optimize.

Each entry field starts from the key label &field and ends at the terminate character “/”. For example, &general entry
field should be given like

&general
Comment line
PREFIX = prefix
MODE = fitting

/

Multiple entries can be put in a single line when separated by semicolon (‘;’). Also, characters put on the right of
sharp (‘#’) will be neglected. Therefore, the above example is equivalent to the following:

&general
PREFIX = prefix; MODE = fitting # Comment line

/

Each variable should be written inside the appropriate entry field.

4.2 List of input variables

4.2.1 “&general”-field

• PREFIX-tag : Job prefix to be used for names of output files

Default None

9

ALM Documentation, Release 2.0.0 beta

Type String

• MODE-tag = optimize | suggest

optimize

Estimate harmonic and anharmonic IFCs.
This mode requires an appropriate &optimize
field.

suggest

Suggests the displacement patterns necessary
to estimate harmonic and anharmonic IFCS.

Default None

Type String

• NAT-tag : Number of atoms in the supercell

Default None

Type Integer

• NKD-tag : Number of atomic species

Default None

Type Integer

• KD-tag = Name[1], . . . , Name[NKD]

Default None

Type Array of strings

Example In the case of GaAs with NKD = 2, it should be KD = Ga As.

• TOLERANCE-tag : Tolerance for finding symmetry operations

Default 1.0e-6

Type Double

• PRINTSYM-tag = 0 | 1

0 Symmetry operations won’t be saved in “SYMM_INFO”
1 Symmetry operations will be saved in “SYMM_INFO”

10 Chapter 4. Making input file for command line

ALM Documentation, Release 2.0.0 beta

Default 0

type Integer

• PERIODIC-tag = PERIODIC[1], PERIODIC[2], PERIODIC[3]

0

Do not consider periodic boundary conditions
when
searching for interacting atoms.

1

Consider periodic boundary conditions when
searching for interacting atoms.

Default 1 1 1

type Array of integers

Description This tag is useful for generating interacting atoms in low dimensional systems.
When PERIODIC[i] is zero, periodic boundary condition is turned off along the direc-
tion of the lattice vector 𝑎𝑖.

4.2.2 “&interaction”-field

• NORDER-tag : The order of force constants to be calculated. Anharmonic terms up to (𝑚 + 1)th order will be
considered with NORDER = 𝑚.

Default None

Type Integer

Example NORDER = 1 for calculate harmonic terms only, NORDER = 2 to include cubic
terms as well, and so on.

• NBODY-tag : Entry for excluding multiple-body clusters from anharmonic force constants

Default NBODY = [2, 3, 4, . . . , NORDER + 1]

Type Array of integers

Description This tag may be useful for excluding multi-body clusters which are supposedly
less important. For example, a set of fourth-order IFCs {Φ𝑖𝑗𝑘𝑙}, where 𝑖, 𝑗, 𝑘, and 𝑙 label
atoms in the supercell, can be categorized into four different subsets; on-site, two-body,
three-body, and four-body terms. Neglecting the Cartesian coordinates of IFCs for sim-
plicity, each subset contains the IFC elements shown as follows:

4.2. List of input variables 11

ALM Documentation, Release 2.0.0 beta

on-site

{Φ𝑖𝑖𝑖𝑖}

two-body

{Φ𝑖𝑖𝑗𝑗}, {Φ𝑖𝑖𝑖𝑗} (𝑖 ̸= 𝑗)

three-body

{Φ𝑖𝑖𝑗𝑘} (𝑖 ̸= 𝑗, 𝑖 ̸= 𝑘, 𝑗 ̸= 𝑘)

four-body

{Φ𝑖𝑗𝑘𝑙} (all subscripts are different from
each other)

Since the four-body clusters are expected to be less important than the three-body and less-
body clusters, you may want to exclude the four-body terms from the Taylor expansion
potential because the number of such terms are huge. This can be done by setting the
NBODY tag as NBODY = 2 3 3 togather with NORDER = 3.

More examples NORDER = 2; NBODY = 2 2 includes harmonic and cubic IFCs but ex-
cludes three-body clusters from the cubic terms.

NORDER = 5; NBODY = 2 3 3 2 2 includes anharmonic terms up to the sixth-
order, where the four-body clusters are excluded from the fourth-order IFCs, and the multi
(≥ 3)-body clusters are excluded from the fifth- and sixth-order IFCs.

4.2.3 “&cutoff”-field

In this entry field, one needs to specify cutoff radii of interaction for each order in units of Bohr. The cutoff radii
should be defined for every possible pair of atomic elements. For example, the cutoff entry for a harmonic calculation
(NORDER = 1) of Si (NKD = 1) may be like

&cutoff
Si-Si 10.0

/

This means that the cutoff radii of 10 𝑎0 will be used for harmonic Si-Si terms. The first column should be element-
name strings, which must be a member of the KD-tag, connected by a hyphen (’-’).

When one wants to consider cubic terms (NORDER = 2), please specify the cutoff radius for the cubic terms in the
third column as the following:

&cutoff
Si-Si 10.0 5.6 # Pair r_{2} r_{3}

/

Instead of giving specific cutoff radii, one can write “None” as follows:

&cutoff
Si-Si None 5.6

/

12 Chapter 4. Making input file for command line

ALM Documentation, Release 2.0.0 beta

which means that all possible harmonic terms between Si-Si atoms will be included.

Note: Setting ‘None’ for anharmonic terms can greatly increase the number of parameters and thereby increase the
computational cost.

When there are more than two atomic elements, please specify the cutoff radii between every possible pair of atomic
elements. In the case of MgO (NKD = 2), the cutoff entry should be like

&cutoff
Mg-Mg 8.0
O-O 8.0
Mg-O 10.0

/

which can equivalently be written by using the wild card (’*’) as

&cutoff

- 8.0
Mg-O 10.0 # Overwrite the cutoff radius for Mg-O harmonic interactions

/

Important: Cutoff radii specified by an earlier entry will be overwritten by a new entry that comes later.

Once the cutoff radii are properly given, harmonic force constants Φ𝜇,𝜈
𝑖,𝑗 satisfying 𝑟𝑖𝑗 ≤ 𝑟

KD[𝑖]−KD[𝑗]
𝑐 will be searched.

In the case of cubic terms, force constants Φ𝜇𝜈𝜆
𝑖𝑗𝑘 satisfying 𝑟𝑖𝑗 ≤ 𝑟

KD[𝑖]−KD[𝑗]
𝑐 , 𝑟𝑖𝑘 ≤ 𝑟

KD[𝑖]−KD[𝑘]
𝑐 , and 𝑟𝑗𝑘 ≤

𝑟
KD[𝑗]−KD[𝑘]
𝑐 will be searched and determined by fitting.

4.2.4 “&cell”-field

Please give the cell parameters in this entry in units of Bohr as the following:

&cell
a
a11 a12 a13
a21 a22 a23
a31 a32 a33

/

The cell parameters are then given by �⃗�1 = 𝑎× (𝑎11, 𝑎12, 𝑎13), �⃗�2 = 𝑎× (𝑎21, 𝑎22, 𝑎23), and �⃗�3 = 𝑎× (𝑎31, 𝑎32, 𝑎33).

4.2.5 “&position”-field

In this field, one needs to specify the atomic element and fractional coordinate of atoms in the supercell. Each line
should be

ikd xf[1] xf[2] xf[3]

4.2. List of input variables 13

ALM Documentation, Release 2.0.0 beta

where ikd is an integer specifying the atomic element (ikd = 1, . . . , NKD) and xf[i] is the fractional coordinate of an
atom. There should be NAT such lines in the &position entry field.

4.2.6 “&optimize”-field

This field is necessary when MODE = optimize.

• LMODEL-tag : Choise of the linear model used for estimating force constants

“least-squares”, “LS”, “OLS”, 1 Ordinary least square
“elastic-net”, “enet”, 2 Elastic net

Default least-squares

Type String

Description When LMODEL = ols, the force constants are estimated from the
displacement-force datasets via the ordinary least-squares (OLS), which is usually suf-
ficient to calculate harmonic and third-order force constants.

The elestic net (LMODEL = enet) should be useful to calculate the fourth-order (and
higher-order) force constants. When the elastic net is selected, the users have to set the
following related tags: CV, L1_RATIO, L1_ALPHA, CV_MAXALPHA, CV_MINALPHA,
CV_NALPHA, STANDARDIZE, ENET_DNORM, MAXITER, CONV_TOL, NWRITE,
SOLUTION_PATH, DEBIAS_OLS

• DFSET-tag : File name containing displacement-force datasets for training

Default None

Type String

Description The format of DFSET can be found here

• NDATA-tag : Number of displacement-force training datasets

Default None

Type Integer

Description If NDATA is not given, the code reads all lines of DFSET (excluding comment
lines) and estimates NDATA by dividing the line number by NAT. If the number of lines
is not divisible by NAT, an error will be raised. DFSET should contain at least NDATA×
NAT lines.

• NSTART, NEND-tags : Specifies the range of data to be used for training

Default NSTART = 1, NEND = NDATA

Type Integer

Example To use the data in the range of [20:30] out of 50 entries, the tags should be NSTART
= 20 and NEND = 30.

14 Chapter 4. Making input file for command line

ALM Documentation, Release 2.0.0 beta

• SKIP-tag : Specifies the range of data to be skipped for training

Default None

Type Two integers connected by a hyphen

Description SKIP =𝑖-𝑗 skips the data in the range of [𝑖:𝑗]. The 𝑖 and 𝑗 must satisfy 1 ≤ 𝑖 ≤
𝑗 ≤ NDATA. This option may be useful when doing cross-validation manually (CV=-1).

• DFSET_CV-tag : File name containing displacement-force datasets used for manual cross-validation

Default DFSET_CV = DFSET

Type String

Description This tag is used only when LMODEL = enet and CV = -1.

• NDATA_CV-tag : Number of displacement-force validation datasets

Default None

Type Integer

Description This tag is used only when LMODEL = enet and CV = -1.

• NSTART_CV, NEND_CV-tags : Specifies the range of data to be used for validation

Default NSTART_CV = 1, NEND_CV = NDATA_CV

Type Integer

Example This tag is used only when LMODEL = enet and CV = -1.

• CV-tag : Cross-validation mode for elastic net

4.2. List of input variables 15

ALM Documentation, Release 2.0.0 beta

0

Cross-validation mode is off.
The elastic net optimization is solved with the
given L1_ALPHA value.
The force constants are written to PREFIX.fcs
and PREFIX.xml.

> 0

CV-fold cross-validation is performed
automatically.
NDATA training datasets are divided into CV
subsets, and CV different combinations of
training-validation datasets are created internally.
For each combination, the elastic net
optimization is solved with the various
L1_ALPHA values defined by the
CV_MINALPHA,
CV_MAXALPHA, and CV_NALPHA tags. The
result of each cross-validation is stored in
PREFIX.enet_cvset[1, . . . , CV], and their
average and deviation are stored in
PREFIX.cvscore.

-1

The cross-validation is performed manually.
The Taylor expansion potential is trained by
using the training datasets in DFSET, and
the validation score is calculated by using the
data in DFSET_CV for various L1_ALPHA
values
defined the CV_MINALPHA, CV_MAXALPHA,
and CV_NALPHA tags.
After the calculation, the fitting and validation
errors are stored in PREFIX.enet_cv.
This option may be convenient for a large-scale
problem since multiple optimization tasks with
different training-validation datasets can be done
in parallel.

Default 0

Type Integer

• L1_ALPHA-tag : The coefficient of the L1 regularization term

Default 0.0

Type Double

Description This tag is used only when LMODEL = enet and CV = 0.

16 Chapter 4. Making input file for command line

ALM Documentation, Release 2.0.0 beta

• CV_MINALPHA, CV_MAXALPHA, CV_NALPHA-tags : Options to specify the L1_ALPHA values used in
cross-validation

Default CV_MINALPHA = 1.0e-4, CV_MAXALPHA = 1.0, CV_NALPHA = 1

Type Double, Double, Integer

Description CV_NALPHA values of L1_ALPHA are generated from CV_MINALPHA to
CV_MAXALPHA in logarithmic scale. A recommended value of CV_MAXALPHA is printed
out to the log file. This tag is used only when LMODEL = enet and the cross-validation
mode is on (CV > 0 or CV = -1).

• L1_RATIO-tag : The ratio of the L1 regularization term

Default 1.0 (LASSO)

Type Double

Description The L1_RATIO changes the regularization term as L1_ALPHA × [L1_RATIO
|Φ|1 + 1

2 (1-L1_RATIO) |Φ|22]. Therefore, L1_RATIO = 1 corresponds to LASSO.
L1_RATIO must be 0 < L1_ratio <= 1.

• STANDARDIZE-tag = 0 | 1

0 Do not standardize the sensing matrix
1

Each column of the sensing matrix is
standardized in such a way that its mean value
becomes 0 and standard deviation becomes 1.

Default 1

Type Integer

Description This option influences the optimal L1_ALPHA value. So, if you change the
STANDARDIZE option, you will have to rerun the cross-validation.

• ENET_DNORM-tag : Normalization factor of atomic displacements

Default 1.0

Type Double

Description The normalization factor of atomic displacement 𝑢0 in units of Bohr. When
𝑢0(̸= 1) is given, the displacement data are scaled as 𝑢𝑖 → 𝑢𝑖/𝑢0 before constructing the
sensing matrix. This option influences the optimal L1_ALPHA value. So, if you change
the ENET_DNORM value, you will have to rerun the cross-validation. Also, this tag has no
effect when STANDARDIZE = 1.

• MAXITER-tag : Number of maximum iterations of the coordinate descent algorithm

4.2. List of input variables 17

ALM Documentation, Release 2.0.0 beta

Default 10000

Type Integer

Description Effective when LMODEL = enet.

• CONV_TOL-tag : Convergence criterion of the coordinate descent iteration

Default 1.0e-8

Type Double

Description The coordinate descent iteration finishes at 𝑖th iteration if
√︁

1
𝑁 |Φ𝑖 −Φ𝑖−1|22 <

CONV_TOL is satisfied, where 𝑁 is the length of the vector Φ.

• SOLUTION_PATH-tag = 0 | 1

0 Do not save the solution path.
1 Save the solution path of each cross-validation combination in PREFIX.solution_path.

Default 0

Type Integer

Description Effective when LMODEL = enet and the cross-validation mode is on.

• DEBIAS_OLS-tag = 0 | 1

0 Save the solution of the elastic net problem to
PREFIX.fcs and PREFIX.xml.

1

After the solution of the elastic net optimization
problem is obtained,
only non-zero coefficients are collected, and the
ordinary least-squares fitting is
solved again with the non-zero coefficients
before saving the results to PREFIX.fcs and
PREFIX.xml. This might be useful to reduce the
bias of the elastic net solution.

Default 0

Type Integer

Description Effective when LMODEL = enet and CV = 0.

• ICONST-tag = 0 | 1 | 2 | 3 | 11

18 Chapter 4. Making input file for command line

ALM Documentation, Release 2.0.0 beta

0 No constraints
1

Constraints for translational invariance will be
imposed between IFCs.
Available only when LMODEL = ols.

11

Same as ICONST = 1 but the constraint is
imposed algebraically rather than numerically.
Select this option when LMODEL = enet.

2

In addition to ICONST = 1, constraints for
rotational invariance will be
imposed up to (NORDER + 1)th order. Available
only when LMODEL = ols.

3

In addition to ICONST = 2, constraints for
rotational invariance between (NORDER + 1)th
order
and (NORDER + 2)th order, which are zero, will
be considered.
Available only when LMODEL = ols.

Default 1

Type Integer

Description See this page for the numerical formulae.

• ROTAXIS-tag : Rotation axis used to estimate constraints for rotational invariance. This entry is necessary
when ICONST = 2, 3.

Default None

Type String

Example When one wants to consider the rotational invariance around the 𝑥-axis, one should
give ROTAXIS = x. If one needs additional constraints for the rotation around the 𝑦-
axis, ROTAXIS should be ROTAXIS = xy.

• FC2XML-tag : XML file to which the harmonic terms will be fixed upon fitting

Default None

Type String

Description When FC2XML-tag is given, harmonic force constants will be fixed to the values
stored in the FC2XML file. This may be useful for optimizing cubic and higher-order terms

4.2. List of input variables 19

ALM Documentation, Release 2.0.0 beta

without changing the harmonic terms. Please make sure that the number of harmonic
terms in the new computational condition is the same as that in the FC2XML file.

• FC3XML-tag : XML file to which the cubic terms will be fixed upon fitting

Default None

Type String

Description Same as the FC2XML-tag, but FC3XML is to fix cubic force constants.

20 Chapter 4. Making input file for command line

CHAPTER 5

Using ALM from python

ALM’s python module can be made following this page.

The job of ALM is to select force constants elements among all possible elements for atoms in a supercell and then
ALM fits relations between displacements and forces to those force constants elements. The selection of the force
constants elements is done by the order of force constants, force constants symmetry, user-input cutoff distances, and
maybe LASSO regression analysis. In the following, how to use ALM is presented step by step.

• Initialization

• Dataset: displacements and forces

• Selection of force constants elements

• Force constants calculation

• Extraction of force constants values

• LASSO and elastic net regression

• Wrap-up and example

5.1 Initialization

ALM class instance is made by context manager as follows:

from alm import ALM

with ALM(lavec, xcoord, numbers) as alm:
...

lavec, xcoord, and numbers are the essential parameters and are the basis vectors, fractional coordinates of
atoms, and atomic numbers, respectively. lavec is the 3 × 3 matrix and 𝑎, 𝑏, 𝑐 basis vectors are given as the row

21

ALM Documentation, Release 2.0.0 beta

vectors, i.e., ⎛⎝𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧

⎞⎠ .

xcoord is the 𝑛× 3 matrix. Each row gives the point coordinates of the atom. numbers is a list of integer numbers.

5.2 Dataset: displacements and forces

ALM requires a dataset composed of sets of pairs of atomic displacements from the input crystal structure and forces
due to the displacements.

Because there should be many supercells with different configurations of displacements, the array shape of the dis-
placement data is (number of supercells, number of atoms, 3). The array shape of forces is the
same as that of the displadements.

For example, the file format of datasets for ALM commandline interface (DFSET) can be easily tranformed to the
displacements and forces by

dfset = np.loadtxt("DFSET").reshape((-1, number_of_atoms, 6))
displacements = dfset[:, :, :3]
forces = dfset[:, :, 3:]

These data are set to ALM by

from alm import ALM

with ALM(lavec, xcoord, numbers) as alm:
...
alm.displacements = displacements
alm.forces = forces

5.3 Selection of force constants elements

The basis force constants selection is performed by

alm.define(maxorder, cutoff_radii, nbody)

maxorder = 1 for only harmonic (2nd-order) force constants, and maxorder = 2 for 2nd- and 3rd-order force
constants, and so on, i.e. up to (n+1)th order force constants are included in the consideration with maxorder=n.
cutoff_radii controls how far the atomic pairs are searched to select force constants elements. nbody is used to
limit interaction of atoms. The details meanings are found in “&interaction”-field for maxorder and nbody and in
“&cutoff”-field for cutoff_radii.

5.4 Force constants calculation

Force constants are calculated by fitting dataset of displacements and forces to the force constants elements selected
by

22 Chapter 5. Using ALM from python

ALM Documentation, Release 2.0.0 beta

alm.optimize()

There are two solvers, which are chosen either by solver='dense' (default) or solver='SimplicialLDLT'
as the keyword argument.

5.5 Extraction of force constants values

The calculated force constants elements are stored in ALM intance in the ALM’s manner. They are extracted by

alm.get_fc(fc_order, mode)

By fc_order=n, (n+1)th order force constants are extracted. mode chooses the format of force constants. There
are three modes, but two of them are important, which are all and origin. By mode=all, all elements of force
constants are returned except for the elements whose values are 0. With mode=origin, the first atomic indices of
force constants are limited for only those in the primitive cell.

5.6 LASSO and elastic net regression

As shown in “&optimize”-field, ALM has a functionality to compute force constants using LASSO and elestic net
regression. This feature is accessed from ALM python module such as by

optcontrol = {'linear_model': 2,
'cross_validation': 4,
'num_l1_alpha': 50}

alm.optimizer_control = optcontrol

The controllable parameters and their variable types are listed as follows:

optimizer_control_data_types = OrderedDict([
('linear_model', int), # LMODEL
('use_sparse_solver', int), # '=1' equivalent to SimplicialLDLT
('maxnum_iteration', int), # MAXITER
('tolerance_iteration', float), # CONV_TOL
('output_frequency', int), # NWRITE
('standardize', int), # STANDARDIZE
('displacement_normalization_factor', float), # ENET_DNORM
('debiase_after_l1opt', int), # DEBIAS_OLS
('cross_validation', int), # CV
('l1_alpha', float), # L1_ALPHA
('l1_alpha_min', float), # CV_MINALPHA
('l1_alpha_max', float), # CV_MAXALPHA
('num_l1_alpha', int), # CV_NALPHA
('l1_ratio', float), # L1_RATIO
('save_solution_path', int)]) # SOLUTION_PATH

5.7 Wrap-up and example

Some examples are found in example directory.

The following python script is an example to computer 2nd and 3rd order force constants by ordinary least square
fitting. Let’s assume the crystal is wurtzite-type AlN as found in the example directory. For the 2nd order, no cutoff

5.5. Extraction of force constants values 23

ALM Documentation, Release 2.0.0 beta

radii are used, but for the 3rd order, cutoff radii of 4 Angstrom is chosen between all pairs of atoms (Al-Al, Al-N,
N-N). The fitting is achieved by using lapack SVD solver. Be sure that the memory usage is ~1.6GB and the whole
calculation takes a few minutes, depending on computers though.

import h5py
import numpy as np
from alm import ALM

with open("POSCAR_AlN") as f:
lines = f.readlines()

[lines.pop(0) for i in range(2)]
[lines.pop(3) for i in range(3)]
vals = np.array([np.fromstring(l, dtype='double', sep=' ') for l in lines])
lavec = vals[:3]
xcoord = vals[3:]
numbers = [13,] * 36 + [7,] * 36
natom = len(numbers)

dfset = np.loadtxt("DFSET_AlN").reshape((-1, natom, 6))
displacements = dfset[:, :, :3]
forces = dfset[:, :, 3:]

cutoff_radii = [np.ones((2, 2)) * -1, np.ones((2, 2)) * 4]

with ALM(lavec, xcoord, numbers, verbosity=1) as alm:
alm.displacements = displacements
alm.forces = forces
alm.define(2, cutoff_radii=cutoff_radii)
alm.optimize()

fc2 = np.zeros((natom, natom, 3, 3), dtype='double', order='C')
fc3 = np.zeros((natom, natom, natom, 3, 3, 3), dtype='double', order='C')
for fc, indices in zip(*alm.get_fc(1, mode='all')):

v1, v2 = indices // 3
c1, c2 = indices % 3
fc2[v1, v2, c1, c2] = fc

for fc, indices in zip(*alm.get_fc(2, mode='all')):
v1, v2, v3 = indices // 3
c1, c2, c3 = indices % 3
fc3[v1, v2, v3, c1, c2, c3] = fc

with h5py.File('fc.hdf5', 'w') as w:
w.create_dataset('fc2', data=fc2, compression='gzip')
w.create_dataset('fc3', data=fc3, compression='gzip')

24 Chapter 5. Using ALM from python

CHAPTER 6

How to make a DFSET file

6.1 Format of DFSET

The displacement-force data sets obtained by first-principles (or classical force-field) calculations have to be saved to a
file, say DFSET. Then, the force constants are estimated by setting DFSET =DFSET and with MODE = optimize.

The DFSET file must contain the atomic displacements and corresponding forces in Cartesian coordinate for at least
NDATA structures (displacement patterns) in the following format: Structure number 1 (this is just a comment line)

𝑢𝑥(1) 𝑢𝑦(1) 𝑢𝑧(1) f𝑥(1)
𝑓𝑦(1) 𝑓𝑧(1)

𝑢𝑥(2) 𝑢𝑦(2) 𝑢𝑧(2) f𝑥(2)
𝑓𝑦(2) 𝑓𝑧(2)

...
...

𝑢𝑥(NAT) 𝑢𝑦(NAT) 𝑢𝑧(NAT) f𝑥(NAT)
𝑓𝑦(NAT) 𝑓𝑧(NAT)

Structure number 2

𝑢𝑥(1) 𝑢𝑦(1) 𝑢𝑧(1) f𝑥(1)
𝑓𝑦(1) 𝑓𝑧(1)

...
...

Here, NAT is the number of atoms in the supercell. The unit of displacements and forces must be Bohr and Ryd/Bohr,
respectively.

25

ALM Documentation, Release 2.0.0 beta

6.2 Generation of DFSET by extract.py

The script extract.py in the tools directory of ALM is useful to generate DFSET files from output files of some
popular DFT codes. Let us assume that we have calculated atomic forces for 10 different structures by VASP and
saved the results as vasprun_01.xml . . . vasprun_10.xml. Then, a DFSET file can be generated as:

VASP

$ python extract.py --VASP=SPOSCAR --offset=vasprun0.xml vasprun??.xml >
→˓DFSET

Here, SPOSCAR is the supercell structure without atomic displacements, and vasprun0.xml is the result of DFT calcu-
lation for SPOSCAR. The --offset option subtract the offset (residual) components of atomic forces from the data
in vasprun??.xml.

Important: The --offset is optional, but we strongly recommend to use it when the fractional coordinates of
atoms have degrees of freedom.

The extract.py can also parse the data from the output files of QE, OpenMX, xTAPP, and LAMMPS:

QE

$ python extract.py --QE=supercell.pw.in --offset=supercell.pw.out disp??.pw.
→˓out > DFSET

OpenMX

$ python extract.py --OpenMX=supercell.dat --offset=supercell.out disp??.out
→˓> DFSET

xTAPP

$ python extract.py --xTAPP=supercell.cg --offset=supercell.str disp??.str >
→˓DFSET

LAMMPS

The LAMMPS case requires a special treatment. We first need to add the dump option in the LAMMPS
input file as

dump 1 all custom 1 XFSET id xu xy xz fx fy fz
dump_modify 1 format float "%20.15f"

This option will generate the file XFSET which contains atomic coordinates and forces. After generating
XFSET files for 10 structures and save them as XFSET.01 . . . XFSET.10 , we can create DFSET as:

$ python extract.py --LAMMPS=supercell.lammps --offset=supercell.XFSET XFSET.
→˓?? > DFSET

26 Chapter 6. How to make a DFSET file

CHAPTER 7

Mathematical background

7.1 Interatomic force constants (IFCs)

The starting point of the computational methodology is to approximate the potential energy of interacting atoms by a
Taylor expansion with respect to atomic displacements by

𝑈 − 𝑈0 =

𝑁∑︁
𝑛=1

𝑈𝑛 = 𝑈1 + 𝑈2 + 𝑈3 + · · · ,

𝑈𝑛 =
1

𝑛!

∑︁
ℓ1𝜅1,...,ℓ𝑛𝜅𝑛

𝜇1,...,𝜇𝑛

Φ𝜇1...𝜇𝑛
(ℓ1𝜅1; . . . ; ℓ𝑛𝜅𝑛) 𝑢𝜇1

(ℓ1𝜅1) · · ·𝑢𝜇𝑛
(ℓ𝑛𝜅𝑛).

(7.1)

Here, 𝑢𝜇(ℓ𝜅) is the atomic displacement of 𝜅th atom in the ℓth unit cell along 𝜇th direction, and
Φ𝜇1...𝜇𝑛

(ℓ1𝜅1; . . . ; ℓ𝑛𝜅𝑛) is the 𝑛th-order interatomic force constant (IFC).

7.2 Symmetry relationship between IFCs

The are several relationships between IFCs which may be used to reduce the number of independence IFCs.

• Permutation

IFC should be invariant under the exchange of the triplet (ℓ, 𝜅, 𝜇), e.g.,

Φ𝜇1𝜇2𝜇3(ℓ1𝜅1; ℓ2𝜅2; ℓ3𝜅3) = Φ𝜇1𝜇3𝜇2(ℓ1𝜅1; ℓ3𝜅3; ℓ2𝜅2) =

• Periodicity

Since IFCs should depend on interatomic distances, they are invariant under a translation in units of the
lattice vector, namely

Φ𝜇1𝜇2...𝜇𝑛
(ℓ1𝜅1; ℓ2𝜅2; . . . ; ℓ𝑛𝜅𝑛) = Φ𝜇1𝜇2...𝜇𝑛

(0𝜅1; ℓ2 − ℓ1𝜅2; . . . ; ℓ𝑛 − ℓ1𝜅𝑛).

• Crystal symmetry

27

ALM Documentation, Release 2.0.0 beta

A crystal symmetry operation maps an atom �⃗�(ℓ𝜅) to another equivalent atom �⃗�(𝐿𝐾) by rotation and
translation. Since the potential energy is invariant under any crystal symmetry operations, IFCs should
transform under a symmetry operation as follows:∑︁

𝜈1,...,𝜈𝑛

Φ𝜈1...𝜈𝑛(𝐿1𝐾1; . . . ;𝐿𝑛𝐾𝑛)𝑂𝜈1𝜇1 · · ·𝑂𝜈𝑛𝜇𝑛 = Φ𝜇1...𝜇𝑛(ℓ1𝜅1; . . . ; ℓ𝑛𝜅𝑛), (7.2)

where 𝑂 is the rotational matrix of the symmetry operation. Let 𝑁𝑠 be the number of symmetry opera-
tions, there are 𝑁𝑠 relationships between IFCs which may be used to find independent IFCs.

Note: In the implementation of ALM, symmetricaly independent IFCs are searched in Cartesian coordi-
nate where the matrix element 𝑂𝜇𝜈 is 0 or ±1 in all symmetry operations except for those of hexagonal
(trigonal) lattice. Also, except for hexagonal (trigonal) systems, the product 𝑂𝜈1𝜇1

· · ·𝑂𝜈𝑛𝜇𝑛
in the left

hand side of equation (7.2) becomes non-zero only for a specific pair of {𝜈} (and becomes 0 for all other
{𝜈}s). Therefore, let {𝜈′} be such a pair of {𝜈}, the equation (7.2) can be reduced to

Φ𝜈′
1...𝜈

′
𝑛
(𝐿1𝐾1; . . . ;𝐿𝑛𝐾𝑛) = 𝑠Φ𝜇1...𝜇𝑛(ℓ1𝜅1; . . . ; ℓ𝑛𝜅𝑛), (7.3)

where 𝑠 = ±1. The code employs equation (7.3) instead of equation (7.2) to reduce the number of IFCs.
If IFCs of the left-hand side and the right-hand side of equation (7.3) are equivalent and the coupling
coefficient is 𝑠 = −1, the IFC is removed since it becomes zero. For hexagonal (trigonal) systems, there
can be symmetry operations where multiple terms in the left-hand side of equation (7.2) become non-zero.
For such cases, equation (7.2) is not used to reduce the number of IFCs. Alternatively, the corresponding
symmetry relationships are imposed as constraints between IFCs in solving fitting problems.

7.3 Constraints between IFCs

Since the potential energy is invariant under rigid translation and rotation, it may be necessary for IFCs to satisfy
corresponding constraints.

The constraints for translational invariance are given by∑︁
ℓ1𝜅1

Φ𝜇1𝜇2...𝜇𝑛(ℓ1𝜅1; ℓ2𝜅2; . . . ; ℓ𝑛𝜅𝑛) = 0, (7.4)

which should be satisfied for arbitrary pairs of ℓ2𝜅2, . . . , ℓ𝑛𝜅𝑛 and 𝜇1, . . . , 𝜇𝑛. The code alm imposes equation (7.4)
by default (ICONST = 1).

The constraints for rotational invariance are∑︁
ℓ′𝜅′

(Φ𝜇1...𝜇𝑛𝜈(ℓ1𝜅1; . . . ; ℓ𝑛𝜅𝑛; ℓ′𝜅′)𝑟𝜇(ℓ′𝜅′) − Φ𝜇1...𝜇𝑛𝜇(ℓ1𝜅1; . . . ; ℓ𝑛𝜅𝑛; ℓ′𝜅′)𝑟𝜈(ℓ′𝜅′))

+

𝑛∑︁
𝜆=1

∑︁
𝜇′
𝜆

Φ𝜇1...𝜇′
𝜆...𝜇𝑛

(ℓ1𝜅1; . . . ; ℓ𝜆𝜅𝜆; . . . ; ℓ𝑛𝜅𝑛)(𝛿𝜇,𝜇𝜆
𝛿𝜈,𝜇′

𝜆
− 𝛿𝜈,𝜇𝜆

𝛿𝜇,𝜇′
𝜆
) = 0,

which must be satisfied for arbitrary pairs of (ℓ1𝜅1, . . . , ℓ𝑛𝜅𝑛;𝜇1, . . . , 𝜇𝑛;𝜇, 𝜈). This is complicated since (𝑛 + 1)th-
order IFCs (first line) are related to 𝑛th-order IFCs (second line).

For example, the constraints for rotational invariance related to harmonic terms can be found as∑︁
ℓ2𝜅2

(Φ𝜇1𝜈(ℓ1𝜅1; ℓ2𝜅2)𝑟𝜇(ℓ2𝜅2) − Φ𝜇1𝜇(ℓ1𝜅1; ℓ2𝜅2)𝑟𝜈(ℓ2𝜅2))

+ Φ𝜈(ℓ1𝜅1)𝛿𝜇,𝜇1
− Φ𝜇(ℓ1𝜅1)𝛿𝜈,𝜇1

= 0,

28 Chapter 7. Mathematical background

ALM Documentation, Release 2.0.0 beta

and ∑︁
ℓ3𝜅3

(Φ𝜇1𝜇2𝜈(ℓ1𝜅1; ℓ2𝜅2; ℓ3𝜅3)𝑟𝜇(ℓ3𝜅3) − Φ𝜇1𝜇2𝜇(ℓ1𝜅1; ℓ2𝜅2; ℓ3𝜅3)𝑟𝜈(ℓ3𝜅3))

+ Φ𝜈𝜇2
(ℓ1𝜅1; ℓ2𝜅2)𝛿𝜇,𝜇1

− Φ𝜇𝜇2
(ℓ1𝜅1; ℓ2𝜅2)𝛿𝜈,𝜇1

+ Φ𝜇1𝜈(ℓ1𝜅1; ℓ2𝜅2)𝛿𝜇,𝜇2
− Φ𝜇1𝜇(ℓ1𝜅1; ℓ2𝜅2)𝛿𝜈,𝜇2

= 0.

When NORDER = 1, equation (7.5) will be considered if ICONST = 2, whereas equation (7.5) will be neglected.
To further consider equation (7.5), please use ICONST = 3, though it may enforce a number of harmonic IFCs to be
zero since cubic terms don’t exist in harmonic calculations (NORDER = 1).

7.4 Estimate IFCs by linear regression

7.4.1 Basic notations

From the symmetrically independent set of IFCs and the constraints between them for satifying the translational and/or
rotational invariance, we can construct an irreducible set of IFCs {Φ𝑖}. Let us denote a column vector comprising the
𝑁 irreducible set of IFCs as Φ. Then, the Taylor expansion potential (TEP) defined by equation (7.1) is written as

𝑈TEP = 𝑏𝑇Φ.

Here, 𝑏 ∈ R1×𝑁 is a function of atomic displacements {𝑢𝑖} defined as 𝑏 = 𝜕𝑈/𝜕Φ. The atomic forces based on the
TEP is then given as

𝐹TEP = −𝜕𝑈TEP

𝜕𝑢
= −𝜕𝑏𝑇

𝜕𝑢
Φ = 𝐴Φ, (7.5)

where 𝐴 ∈ R3𝑁𝑠×𝑁 with 𝑁𝑠 being the number of atoms in the supercell, and 𝑢𝑇 = (𝑢𝑥
1 , 𝑢

𝑦
1, 𝑢

𝑧
1, . . . , 𝑢

𝑥
𝑁𝑠

, 𝑢𝑦
𝑁𝑠

, 𝑢𝑧
𝑁𝑠

)
is the vector comprising 3𝑁𝑠 atomic displacements in the supercell. Note that the matrix 𝐴 and force vector 𝐹TEP

depend on the atomic configuration of the supercell. To make this point clearer, let us denote them as 𝐴(𝑢) and
𝐹TEP(𝑢).

To estimate the IFC vector Φ by linear regression, it is usually necessary to consider several different displacement
patterns. Let us suppose we have 𝑁𝑑 displacement patterns and atomic forces for each pattern obtained by DFT. Then,
equation (7.5) defined for each displacement pattern can be combined to single equation as

𝐹TEP = AΦ,

where 𝐹 𝑇 = [𝐹 𝑇 (𝑢1), . . . ,𝐹 𝑇 (𝑢𝑁𝑑
)] and A𝑇 = [𝐴𝑇 (𝑢1), . . . , 𝐴𝑇 (𝑢𝑁𝑑

)].

7.4.2 Ordinary least-squares

In the ordinary least-squares (LMODEL = least-squares), IFCs are estimated by solving the following problem:

ΦOLS = argmin
Φ

1

2𝑁𝑑
‖𝐹DFT − 𝐹TEP‖22 = argmin

Φ

1

2𝑁𝑑
‖𝐹DFT − AΦ‖22. (7.6)

Therefore, the IFCs are determined so that the residual sum of squares (RSS) is minimized. To determine all elements
of ΦOLS uniquely, A𝑇A must be full rank. When the fitting is successful, alm reports the relative fitting error 𝜎
defined by

𝜎 =

√︃
‖𝐹DFT − AΦ‖22

‖𝐹DFT‖22
, (7.7)

where the denominator is the square sum of the DFT forces.

7.4. Estimate IFCs by linear regression 29

ALM Documentation, Release 2.0.0 beta

7.4.3 Elastic-net regression

In the elasitc-net optimization (LMODEL = elastic-net), IFCs are estimated by solving the following optimiza-
tion problem:

Φenet = argmin
Φ

1

2𝑁𝑑
‖𝐹DFT − AΦ‖22 + 𝛼𝛽‖Φ‖1 +

1

2
𝛼(1 − 𝛽)‖Φ‖22, (7.8)

where 𝛼 is a hyperparameter that controls the trade-off between the sparsity and accuracy of the model, and 𝛽 (0 <
𝛽 ≤ 1) is a hyperparameter that controls the ratio of the 𝐿1 and 𝐿2 regularization terms. 𝛼 and 𝛽 must be given by
input tags L1_ALPHA and L1_RATIO, respectively.

An optimal value of 𝛼 can be estimated, for example, by cross-validation (CV). A 𝑛-fold CV can be performed by
setting the CV-tag properly.

30 Chapter 7. Mathematical background

CHAPTER 8

API

8.1 ALM python modules

8.1.1 alm module

8.1.2 Module contents

31

ALM Documentation, Release 2.0.0 beta

32 Chapter 8. API

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

33

	About
	What is ALM?
	Features
	Links
	License
	How to Cite ALM
	Acknowledgement
	Author & Contact

	Building ALM using conda
	Preparing build tools by conda
	Building ALM

	Building ALM using Makefile
	Requirement
	How to install

	Making input file for command line
	Format of input file
	List of input variables

	Using ALM from python
	Initialization
	Dataset: displacements and forces
	Selection of force constants elements
	Force constants calculation
	Extraction of force constants values
	LASSO and elastic net regression
	Wrap-up and example

	How to make a DFSET file
	Format of DFSET
	Generation of DFSET by extract.py

	Mathematical background
	Interatomic force constants (IFCs)
	Symmetry relationship between IFCs
	Constraints between IFCs
	Estimate IFCs by linear regression

	API
	ALM python modules

	Indices and tables

